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Introduction

o Let (Q,.7,{Z:}:>,P) be a probability space and {W;} be an R%-valued
standard Brownian motion.
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Introduction

o Let (Q,.7,{Z:}:>,P) be a probability space and {W;} be an R%-valued
standard Brownian motion.

@ Denote by & the collection of all probability measures on R?. Assume
b:[0,00) xR x & = RY and 7 : [0,00) x RY x & — RI QR are
measurable functions.

Consider

dX<(t) =b(t, X(t), Lxe(r))dt +Vea(t, X(t), Lxe(r))AW(t), t € [0, T]

with initial data X¢(0) = x.
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Introduction

Under appropriate assumptions, as € — 0, X will tend to the solution of the
following deterministic equation:

dXO(t) = b(t, XO(t), dxor))dt, t € [0, T],
X%(0) = x,

where dxo(y) is a dirac measure at X°(t).

Y. Song (NJU) LDP and MDP for DDSDEs



Introduction

To investigate deviations of X¢ from the deterministic solution X0, as e decreases
to 0, that is,
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To investigate deviations of X¢ from the deterministic solution X0, as e decreases
to 0, that is, the asymptotic behavior of the trajectory,

Xe(t) = XO(t)
Ve

where A(e) is some deviation scale which strongly influences the asymptotic
behavior of Y¢.

Ye(t) = t €0, T],
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Introduction

To investigate deviations of X¢ from the deterministic solution X0, as e decreases
to 0, that is, the asymptotic behavior of the trajectory,

Xe(t) = XO(t)
Ve

where A(e) is some deviation scale which strongly influences the asymptotic
behavior of Y¢.

Ye(t) = t €0, T],

@ Large deviation principle(LDP): A(e) = \%
@ Central limit theorem(CLT): A(e) = 1;

@ Moderate deviation principle(MDP):

A(€) = +00, VeM(e) — 0ase— 0.
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Introduction

Assume & is a Polish space and (&) is the Borel o—algebra. {Z}c~0 is
a family of &—valued random variables.

Definition (Rate function)

A function | : & — [0, 0] is called a rate function on &, if for each
a € [0,00), the level set {x € & : I(x) < a} is a compact subset of &
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Introduction

Definition (Large deviation principle)

Let / be a rate function on &. The family {Z¢}.~ is said to satisfy a large
deviation principle on & with rate function /, if the following two conditions are

satisfied:

© (Upper bound) For every closed subset C of &,

limsupelogP (Z¢ € C) < — inf /(x).
e—0 xeC

@ (Lower bound) For every open subset O of &,

imi € > .
I|ren_>|(rJlfeIogIP’(Z €0)> ;ggl(x)
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Introduction

LDP for mean-field interacting particle systems:

(1) S. Feng, Large deviations for empirical process of mean-field
interacting particle system with unbounded jumps. Ann. Probab.,
22(1994), no.4, 2122-2151.

(2) S. Feng, Large deviations for Markov processes with mean field
interaction and unbounded jumps. Probab. Theory Related Fields,
100(1994), no. 2, 227-252.

(3) W. Liu and L. Wu, Large deviations for empirical measures of
mean-field gibbs measures. Stoch. Proc. Appl., 130 (2020), 503-520.
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Introduction

LDP and MDP on (C([0, T];R?), || - [|o):

(1) G. Dos Reis, W. Salkeld, and J. Tugaut, Freidlin-Wentzell LDPs in path
space for McKean-Vlasov equations and the functional iterated logarithm
law. Ann. Appl. Probab., 29(2019), 1487-1540.

(2) Y. Suo and C. Yuan, CLT and MDP for McKean-Vlasov SDEs. Acta Appl.
Math., 175(2021), Paper No.16.

(3) D. Adams, G.D. Reis, R. Ravaille, W. Salkeld and J. Tugaut, Large
Deviations and Exit-times for reflected McKean-Vlasov equations with
self-stabilizing terms and superlinear drifts. Stoch. Proc. Appl., 146(2022),
264-310.
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Known Results

Idea of the existing results: Recall
dX(t) = b(t, X(t), Lxe(r))dt + Veo(t, X(t), Lxe(r))dW(t), t € [0, T],
and
dXO(t) = b(t, X°(t), 5xo(r))dt, t € [0, T],
with initial data X<(0) = X°(0) = x.
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Known Results

Idea of the existing results: Recall
dX(t) = b(t, X(t), Lxe(r))dt + Veo(t, X(t), Lxe(r))dW(t), t € [0, T],
and
dXO(t) = b(t, X°(t), 5xo(r))dt, t € [0, T],
with initial data X<(0) = X°(0) = x.
Set
dZe(t) = b(t, Z°(t), dxo(r))dt + Vea(t, Z°(t), dxor))dW(t), t € [0, T],

with initial data Y¢(0) = x.
Two steps:

@ Step 1: LDPs for Z¢ as the parameter ¢ tends to 0,

@ Step 2: X€ and Z¢ are exponentially equivalent as ¢ goes to 0, i.e. for any
0 >0,

limsupelog P(|| X — Z) 00 = 0) = —c0.
e—0
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Known Results

(4) W. Liu, Y. Song, J. Zhai, T. Zhang: Large and moderate deviation principles
for McKean-Vlasov SDEs with jumps, to appear in Potential Analysis

(5) W. Hong, S. Li, and W. Liu: Large deviation principle for McKean-Vlasov
quasilinear stochastic evolution equations. Appl. Math. Optim., 84(2021),
no. 1, suppl., S1119-S1147.
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Known Results

The key step is to identify the correct controlled equation.
Assume that there is a unique strong solution X*.

dX<(t) =b(t, X(t), Lx(r))dt + Vea(t, X(t), Lxe(r))dW(t), t €0, T]

withX€(0) = x.
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Known Results

The key step is to identify the correct controlled equation.
Assume that there is a unique strong solution X*.

dX<(t) =b(t, X(t), Lx(r))dt + Vea(t, X(t), Lxe(r))dW(t), t €0, T]

withX€(0) = x.
Then, there exists a measurable map ¢ such that the solution X€ can be
represented as

X = (W()).

Xoh =T (W() + \% In ué(s)ds> is the solution to the following controlled
SDE:

AXSU(t) = b(t, XU (t), Lxern)dt + Vea(t, X (t), Lxe(n)dW(t)
o (t, XU (t), Lxen)u(t)dt, te [0, T],

where Zx.(y) is the distribution of X¢(t), but not the one of X (t).
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Introduction

A. Matoussi, W. Sabbagh, T. Zhang, Large deviation principle of obstacle
problems for Quasilinear Stochastic PDEs. Appl. Math. Optim., 83(2021), no.2,
849-879.
(LDP1) For any m € (0, 00), any family {u.,e > 0} € S™, and any § > 0,

lim P(HX““E — (1) |oo > 5) —0.

e—0
(LDP2) For any m € (0, 00) and any family {u, € S™, n € N} satisfying that u,

converges to some element u in S™ as n — oo, [(u,) converges to M(u) in the
space C([0, T];RY).
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Introduction

LDP on (C*([0, T];R9), || - [|a):

1 P. Baldi, G. Ben Arous, and G. Kerkyacharian, Large deviations and the
Strassen theorem in Holder norm. Stochastic Process. Appl. 42(1992),
no.l, 171-180.

2 G. Ben Arous and M. Ledoux, Grandes déviations de Freidlin-Wentzell en
norme Holderienne. In Séminaire de Probabilités, XXVIII. Lecture Notes in
Math., 1583(1994), 293-299. Springer, Berlin.

3 Y.-J. Hu, A large deviation principle for small perturbations of random
evolution equations in Hdlder norm. Stochastic Process. Appl. 68(1997),
83-99.

4 F. Gao, Large deviations for diffusion processes in Holder norm. Adv. in
Math. (China), 26(1997), no.2, 147-158.

5 G. Dos Reis, W. Salkeld, and J. Tugaut, Freidlin-Wentzell LDPs in path
space for McKean-Vlasov equations and the functional iterated logarithm
law. Ann. Appl. Probab., 29(2019), 1487-1540.
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Known Results

Idea of the existing results: Two steps to establish LDP on Hdlder space:
@ Step 1: prove LDPs on C([0, T]; R9).

@ Step 2: transfer LDP results from supremum norms to Holder norms. To
derive the following inequality: for each R > 0 and p > 0, there exists 6 > 0
and for v > 0 such that for € € (0, v),

P <|X6 = Y0 > p, [VeW */ u(s)dslloo < 5) < exp <R) )
0 €
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Main Results

@ For any fixed 7 > 0, denote by € := C([—7, 0], R9) the space of all
continuous RY—valued functions defined on [, 0]. It is equipped with the
uniform norm

1€lle == sup [£(0)].
0]

oc[—,
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@ For any fixed 7 > 0, denote by € := C([—7, 0], R9) the space of all
continuous RY—valued functions defined on [, 0]. It is equipped with the
uniform norm

1€lle == sup [£(0)].
0]

oe[—,

@ Let 227 be the collection of all probability measures with finite second
moments on €. It is equipped with

1

Wa(uv) = inf ([g (glf—nllgﬂ(d&dno,

mel(p,v)

where I'(u, ) denotes the set of all couplings for 1 and v.
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Main Results

@ For any fixed 7 > 0, denote by € := C([—7, 0], R9) the space of all
continuous RY—valued functions defined on [, 0]. It is equipped with the
uniform norm

1€lle == sup [£(0)].
0]

oe[—,

@ Let 227 be the collection of all probability measures with finite second
moments on €. It is equipped with

1

W)= ot ([ le-ulfmas.an)
rel(pr) \Jgxe
where I'(u, ) denotes the set of all couplings for 1 and v.
@ For f € C([—, T],RY), the €-valued function {f,}.c[o, 7] defined by
f(0) =f(t+0), 0c[-7,0]

is called the segment (or window) process of {f(t)}c[—r,7]-
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Main Results

Path-distribution dependent SDEs:

Let b: [0, +00) x € x 2 — R and 0 : [0, +0) x € x ZZ¥ — RI @ RY be
measurable functions.
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Main Results

Path-distribution dependent SDEs:
Let b: [0, +00) x € x 2 — R and 0 : [0, +0) x € x ZZ¥ — RI @ RY be
measurable functions.
@ Consider the following path-distribution dependent SDEs:
dX(t) = b(t, X, Lx,)dt + o(t, Xe, Lx,)AW(t), Xo =&, 2)

where ¢ is an element of €, X; is the segment process and .Zx, stands for
the distribution of X;.

@ Consider

dXe(t) = b(t, X7, Lxe )dt + eo(t, X, Lxe)AW(t), Xo=E(€F.

o Let {X°(t)}ie[—r, 1] be the solution of

dXO(t) = b(t, X?,0xo)dt, Xo=¢€E.
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Main Results

Assumptions:

(H1) (Continuity) For each t > 0, b(t, -, -) is continuous on ¢ x 25, and there
exists L > 0 such that for t >0 ¢&,n €€, p,v € 2F,

|b(t’£7.u“) - b(tvna V)‘2+||O'(t’£7u“) - U(ta 7, V)H2 S L (”6 - anza”_FW%(:uv V)) .
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Main Results

Assumptions:

(H1) (Continuity) For each t > 0, b(t, -, -) is continuous on ¢ x 25, and there
exists L > 0 such that for t >0 ¢&,n €€, p,v € 2F,

|b(t’£7.u“) - b(tvna V)‘2+||O'(t’€7u“) - U(tv 7, V)H2 S L (”6 - anza”_FW%(:uv V)) .

(H2) (Growth) b is bounded on bounded sets in [0,00) x € x Z2F, and there
exists K > 0 such that

[b(t,0, )| *+ o (, 0, )P <K (L+ (]l - %)) .t = 0, p € 25

(H3) Forany t € [0, T] and pu € &y, b(t,-,u) : € — R? is Frechet differentiable.
There exists L’ > 0 such that

| Db(t, x, ) — Db(t,x", p)|lg~ < L'||x — X' ||, Vx,x" € €,t € [0, T],n € P
and [, [ Db(t, XP. 3x)

w+dt < 00.
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Main Results

A continuous adapted process {X:} on € is called a strong solution of (2), if

t t
/ ]E|b(s,Xs,$xs)|ds+/ E|lo(s, Xs, Zx.)||?ds < 0o, t >0
0 0

and X(t) := X:(0) satisfies

t t
X(t):§(0)+/ b(s,Xs,fxs)ds—i—/ o (5, X, . )AWs, t> 0.
0 0
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Main Results

A continuous adapted process {X:} on € is called a strong solution of (2), if

t t
/ E|b(s, Xs, - Zx.)|ds Jr/ E|lo(s, Xs, Zx.)||?ds < 0o, t >0
0 0

and X(t) := X:(0) satisfies

t t
X(t):§(0)+/ b(s,Xs,fxs)ds—i—/ o (5, X, . )AWs, t> 0.
0 0

v

Existence and Uniqueness of the Solution: According to Theorem 3.1 in [1], under
(H1) and (H2) there is a unique strong solution to (2).

1. X. Huang, M. Rockner, F.-Y. Wang, Nonlinear Fokker-Planck equations for
probability measures on path space and path-distribution dependent SDEs, Discrete
Contin. Dyn. Syst., 39(2019), 3017-3035.

Y. Song (NJU) LDP and MDP for DDSDEs 26 - 11 - 2022 21 /28



Main Results

For u € L*([0, T],RY), let {Y“(t)}te[—r,7] be the solution of

dy(t)

= b(t, V¢, 0xe) +o(t, V¢, oxe)u(t), te(0,T],
You(t) = f(t), te [*7_’ 0]

3)
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Main Results

For u € L*([0, T],RY), let {Y“(t)}te[—r,7] be the solution of

dy(t)

= b(t, Y, 0x0) + a(t, Y, dxo)u(t), te(0,T], (3)
YOU(t) = f(t‘), te [*7_’ 0]

Theorem 1[Gu, S. 2022]

Assume (H1) and (H2) hold. Then {X¢(-)}s0 satisfies a LDP on C([—7, T];RY)
with the speed € and the rate function / given by

.
e)=_ . nf {; / |u(s)|2ds}, g € C([-7, TLR).

 {uel2([0, T],RY):g=Y"}
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Let a(e) > 0,¢ € (0, 1) satisfy

a(e) — +oo, i—>0, e — 0.

a(e)?
Define

ME(t) = % (X“(t) = X(1)), te[-rT]

and for t € [0, T]

Mi(r) .= M (t+r),r €[-T7,0].
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Main Result

For u e S, let KY be the solution of

dKY(t) =4~ (Db(t, X?,0x0), Ki')edt + o(t, XP, dxo)u(t)dt,
Ky(t)=0, te[-70].
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Main Result

For u e S, let KY be the solution of

dKY(t) =4~ (Db(t, X?,0x0), Ki')edt + o(t, XP, dxo)u(t)dt,
K§(t)=0, te[-7,0]

Theorem 2[Gu, S. 2022]

Assume (H1), (H2) and (H3) hold. Then {M¢(-),e > 0} satisfies a LDP on
C([~7, T],R9) with speed ¢/a(e) and the rate function / given by

1 T
I(g) = inf = ’d C([-7, T],RY).
(8) {ueu([o,;?,w);g_m}{z | 1) } g € C(l-, TLRY)
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Main Result

(H4) o is bounded and there exists 8 € (0, 1] such that for each y € ¢ and
pe€ 2% b(-,y,u) and o(-,y, ) are f-Hdlder continuous.
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Main Result

(H4) o is bounded and there exists 8 € (0, 1] such that for each y € € and
pe 2%, b(-,y,pn) and o(-,y, i) are 3-Holder continuous.

For a Borel set A of Hélder space C®([—T,1]; R?), denote

I(A) = inf{;/ol lu(s)]?ds: Y" € A}.

Theorem 3[S. 2022]

Assume (H1), (H2) and (H4) hold. Let a € (0, 3) and £ € C*([—7,0]; R?). Then
for each Borel set A of C%([—7,1];RY),

—1(A) < Iimi(r)n‘elogIE”(XE € A) <limsupelogP(X® € A) < —I(A),
e—

e—0

where A and A are the interior and closure of A in C*([—7,1]; R9).

v
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Main Result

Proposition 4

Under the conditions of Theorem 3, for each R > 0 and p > 0, there exists 0 > 0
and for v > 0 such that for € € (0, v),

’ R
P (||X6 Y = p, [[VeW —/ u(s)dslleo < 6) < exp (—) .
0 €
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Main Result

Let n be an integer and {W(t)}c[o.1] be a n-dimensional Brownian motion.

Lemma[G. Ben Arous, M. Ledoux 1994]

For o € (0, %) there exists a constant C > 0 independent of n such that for

u,v >0,
}exp{—

Q=

)

Ol =
<
o= €
L|| Bl
N
——

P(|Wia 2 u,| W]l < v) < Cmax {1,

<l

Y. Song (NJU) LDP and MDP for DDSDEs 26 - 11 - 2022 27 / 28



Main Result

Let n be an integer and {W(t)}c[o.1] be a n-dimensional Brownian motion.

Lemma[G. Ben Arous, M. Ledoux 1994]

For o € (0, %) there exists a constant C > 0 independent of n such that for

u,v >0,
Jeo{ - ¢ i)

Q=
Q=

P(IWlla 2 v, Wil < v) < Cmax{1,(2)

Lemma[G. Ben Arous, M. Ledoux 1994]

For o € (0, 3), there is a constant C’ > 0 such that for u > 0 and K € C([0,1])
with [|K|leo <1,

u2

P (1 [ KEWEa 2 Kl <1) < Cep{ - ).
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