Large and Moderate Deviation Principles for path-distribution dependent SDEs

Yulin Song

Nanjing University

The 17th Workshop on Markov Processes and Related Topics 2022. 11. 25 – 2022. 11. 27 Joint work with Xinyi Gu

Let $(\Omega,\mathscr{F},\{\mathscr{F}_t\}_{t\geq},\mathbb{P})$ be a probability space and $\{\mathcal{W}_t\}$ be an \mathbb{R}^d -valued standard Brownian motion.

- Let $(\Omega,\mathscr{F},\{\mathscr{F}_t\}_{t\geq},\mathbb{P})$ be a probability space and $\{\mathcal{W}_t\}$ be an \mathbb{R}^d -valued standard Brownian motion.
- Denote by ${\mathscr P}$ the collection of all probability measures on \mathbb{R}^d . Assume $b:[0,\infty)\times\mathbb{R}^d\times\mathscr{P}\to\mathbb{R}^d$ and $\sigma:[0,\infty)\times\mathbb{R}^d\times\mathscr{P}\to\mathbb{R}^d\bigotimes\mathbb{R}^d$ are measurable functions.
- Let $(\Omega,\mathscr{F},\{\mathscr{F}_t\}_{t\geq},\mathbb{P})$ be a probability space and $\{\mathcal{W}_t\}$ be an \mathbb{R}^d -valued standard Brownian motion.
- Denote by ${\mathscr P}$ the collection of all probability measures on \mathbb{R}^d . Assume $b:[0,\infty)\times\mathbb{R}^d\times\mathscr{P}\to\mathbb{R}^d$ and $\sigma:[0,\infty)\times\mathbb{R}^d\times\mathscr{P}\to\mathbb{R}^d\bigotimes\mathbb{R}^d$ are measurable functions.

Consider

 $dX^{\epsilon}(t) = b(t, X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})dt + \sqrt{\epsilon}\sigma(t, X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})dW(t), t \in [0, T]$

with initial data $X^{\epsilon}(0) = x$.

Under appropriate assumptions, as $\epsilon \to 0$, X^ϵ will tend to the solution of the following deterministic equation:

$$
\begin{cases} dX^0(t) = b(t, X^0(t), \delta_{X^0(t)})dt, \ t \in [0, T],\\ X^0(0) = x,\end{cases}
$$
 (1)

where $\delta_{{X^0}(t)}$ is a dirac measure at $X^0(t).$

Introduction

To investigate deviations of X^ϵ from the deterministic solution X^0 , as ϵ decreases to 0, that is,

$$
Y^{\epsilon}(t)=\frac{X^{\epsilon}(t)-X^{0}(t)}{\sqrt{\epsilon}\lambda(\epsilon)}, \quad t\in[0, T],
$$

where $\lambda(\epsilon)$ is some deviation scale which strongly influences the asymptotic behavior of Y^{ϵ} .

$$
Y^{\epsilon}(t)=\frac{X^{\epsilon}(t)-X^{0}(t)}{\sqrt{\epsilon}\lambda(\epsilon)}, \quad t\in[0, T],
$$

where $\lambda(\epsilon)$ is some deviation scale which strongly influences the asymptotic behavior of Y^{ϵ} .

Large deviation principle(LDP): $\lambda(\epsilon) = \frac{1}{\sqrt{\epsilon}}$;

$$
Y^{\epsilon}(t)=\frac{X^{\epsilon}(t)-X^{0}(t)}{\sqrt{\epsilon}\lambda(\epsilon)}, \quad t\in[0, T],
$$

where $\lambda(\epsilon)$ is some deviation scale which strongly influences the asymptotic behavior of Y^{ϵ} .

- Large deviation principle(LDP): $\lambda(\epsilon) = \frac{1}{\sqrt{\epsilon}}$;
- Central limit theorem(CLT): $\lambda(\epsilon) = 1$;

$$
Y^{\epsilon}(t)=\frac{X^{\epsilon}(t)-X^{0}(t)}{\sqrt{\epsilon}\lambda(\epsilon)}, \quad t\in[0, T],
$$

where $\lambda(\epsilon)$ is some deviation scale which strongly influences the asymptotic behavior of Y^{ϵ} .

- Large deviation principle(LDP): $\lambda(\epsilon) = \frac{1}{\sqrt{\epsilon}}$;
- Central limit theorem(CLT): $\lambda(\epsilon) = 1$;
- Moderate deviation principle(MDP):

 $\lambda(\epsilon) \to +\infty$, $\sqrt{\epsilon} \lambda(\epsilon) \to 0$ as $\epsilon \to 0$.

Assume $\mathscr E$ is a Polish space and $\mathscr B(\mathscr E)$ is the Borel $\sigma-$ algebra. $\{ \mathsf Z^{\epsilon} \}_{\epsilon>0}$ is a family of $\mathscr{E}-v$ alued random variables.

Definition (Rate function)

A function $I: \mathscr{E} \to [0,\infty]$ is called a rate function on \mathscr{E} , if for each $\alpha \in [0,\infty)$, the level set $\{x \in \mathscr{E} : l(x) \leq \alpha\}$ is a compact subset of \mathscr{E} .

Definition (Large deviation principle)

Let I be a rate function on $\mathscr E.$ The family $\{Z^\epsilon\}_{\epsilon>0}$ is said to satisfy a large deviation principle on $\mathscr E$ with rate function I, if the following two conditions are satisfied:

1 (Upper bound) For every closed subset C of \mathscr{E} .

 $\limsup_{\epsilon \to 0} \epsilon \log \mathbb{P} (Z^{\epsilon} \in C) \leq - \inf_{x \in C} I(x).$

2 (Lower bound) For every open subset O of \mathscr{E} ,

 $\liminf_{\epsilon \to 0} \epsilon \log \mathbb{P} (Z^{\epsilon} \in O) \geq - \inf_{x \in O} I(x).$

LDP for mean-field interacting particle systems:

- (1) S. Feng, Large deviations for empirical process of mean-field interacting particle system with unbounded jumps. Ann. Probab., 22(1994), no.4, 2122-2151.
- (2) S. Feng, Large deviations for Markov processes with mean field interaction and unbounded jumps. Probab. Theory Related Fields, 100(1994), no. 2, 227-252.
- (3) W. Liu and L. Wu, Large deviations for empirical measures of mean-field gibbs measures. Stoch. Proc. Appl., 130 (2020), 503-520.

${\sf LDP}$ and MDP on $(\,C([0,\,T];\mathbb{R}^d),\|\cdot\|_\infty)\mathpunct{:}$

- (1) G. Dos Reis, W. Salkeld, and J. Tugaut, Freidlin-Wentzell LDPs in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab., 29(2019), 1487-1540.
- (2) Y. Suo and C. Yuan, CLT and MDP for McKean-Vlasov SDEs. Acta Appl. Math., 175(2021), Paper No.16.
- (3) D. Adams, G.D. Reis, R. Ravaille, W. Salkeld and J. Tugaut, Large Deviations and Exit-times for reflected McKean-Vlasov equations with self-stabilizing terms and superlinear drifts. Stoch. Proc. Appl., 146(2022), 264-310.

Idea of the existing results: Recall

 $\mathrm{d} X^{\epsilon}(t)=b(t,X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})\mathrm{d} t+\sqrt{\epsilon}\sigma(t,X^{\epsilon}(t),\mathscr{L}_{X^{\epsilon}(t)})\mathrm{d} W(t),\,\,t\in[0,T],$ and

 $\mathrm{d} X^{0}(t)=b(t,X^{0}(t),\delta_{X^{0}(t)})\mathrm{d} t,\,\,t\in[0,\mathcal{T}],$

with initial data $X^{\epsilon}(0)=X^{0}(0)=x.$

Idea of the existing results: Recall

 $\mathrm{d} X^{\epsilon}(t)=b(t,X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})\mathrm{d} t+\sqrt{\epsilon}\sigma(t,X^{\epsilon}(t),\mathscr{L}_{X^{\epsilon}(t)})\mathrm{d} W(t),\,\,t\in[0,T],$ and

 $\mathrm{d} X^{0}(t)=b(t,X^{0}(t),\delta_{X^{0}(t)})\mathrm{d} t,\,\,t\in[0,\mathcal{T}],$

with initial data $X^{\epsilon}(0)=X^{0}(0)=x.$ Set

 $dZ^{\epsilon}(t) = b(t, Z^{\epsilon}(t), \delta_{X^{0}(t)})dt + \sqrt{\epsilon}\sigma(t, Z^{\epsilon}(t), \delta_{X^{0}(t)})dW(t), t \in [0, T],$ with initial data $Y^{\epsilon}(0) = x$.

Idea of the existing results: Recall

 $\mathrm{d} X^{\epsilon}(t)=b(t,X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})\mathrm{d} t+\sqrt{\epsilon}\sigma(t,X^{\epsilon}(t),\mathscr{L}_{X^{\epsilon}(t)})\mathrm{d} W(t),\,\,t\in[0,T],$ and

 $\mathrm{d} X^{0}(t)=b(t,X^{0}(t),\delta_{X^{0}(t)})\mathrm{d} t,\,\,t\in[0,\mathcal{T}],$

with initial data $X^{\epsilon}(0)=X^{0}(0)=x.$ Set

 $dZ^{\epsilon}(t) = b(t, Z^{\epsilon}(t), \delta_{X^{0}(t)})dt + \sqrt{\epsilon}\sigma(t, Z^{\epsilon}(t), \delta_{X^{0}(t)})dW(t), t \in [0, T],$ with initial data $Y^{\epsilon}(0) = x$. Two steps:

- Step 1: LDPs for Z^{ϵ} as the parameter ϵ tends to 0,
- Step 2: X^{ϵ} and Z^{ϵ} are exponentially equivalent as ϵ goes to 0, i.e. for any $\delta > 0$.

$$
\limsup_{\epsilon\to 0} \epsilon\log \mathbb{P}(\|X^\epsilon-Z^\epsilon\|_\infty\geq \delta)=-\infty.
$$

- (4) W. Liu, Y. Song, J. Zhai, T. Zhang: Large and moderate deviation principles for McKean-Vlasov SDEs with jumps, to appear in Potential Analysis
- (5) W. Hong, S. Li, and W. Liu: Large deviation principle for McKean-Vlasov quasilinear stochastic evolution equations. Appl. Math. Optim., 84(2021), no. 1, suppl., S1119-S1147.

The key step is to identify the correct controlled equation. Assume that there is a unique strong solution $X^\epsilon.$

 $dX^{\epsilon}(t) = b(t, X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})dt + \sqrt{\epsilon}\sigma(t, X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})dW(t), t \in [0, T]$

with $X^{\epsilon}(0) = x$.

The key step is to identify the correct controlled equation. Assume that there is a unique strong solution $X^\epsilon.$

 $dX^{\epsilon}(t) = b(t, X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})dt + \sqrt{\epsilon}\sigma(t, X^{\epsilon}(t), \mathscr{L}_{X^{\epsilon}(t)})dW(t), t \in [0, T]$

with $X^{\epsilon}(0) = x$.

Then, there exists a measurable map Γ^{ϵ} such that the solution X^{ϵ} can be represented as

 $X^{\epsilon} = \Gamma^{\epsilon}(W(\cdot)).$

 $X^{\epsilon,h^\epsilon}:=\Gamma^\epsilon\left(W(\cdot)+\frac{1}{\sqrt{\epsilon}}\int_0^\cdot u^\epsilon(s)ds\right)$ is the solution to the following controlled SDE:

$$
dX^{\epsilon, u^{\epsilon}}(t) = b(t, X^{\epsilon, u^{\epsilon}}(t), \mathscr{L}_{X^{\epsilon}(t)})dt + \sqrt{\epsilon}\sigma(t, X^{\epsilon, u^{\epsilon}}(t), \mathscr{L}_{X^{\epsilon}(t)})dW(t) + \sigma(t, X^{\epsilon, u^{\epsilon}}(t), \mathscr{L}_{X^{\epsilon}(t)})u^{\epsilon}(t)dt, \quad t \in [0, T],
$$

where $\mathscr{L}_{X^{\epsilon}(t)}$ is the distribution of $X^{\epsilon}(t)$, but not the one of $X^{\epsilon, u^{\epsilon}}(t)$.

A. Matoussi, W. Sabbagh, T. Zhang, Large deviation principle of obstacle problems for Quasilinear Stochastic PDEs. Appl. Math. Optim., 83(2021), no.2, 849-879.

(LDP1) For any $m \in (0,\infty)$, any family $\{u_{\epsilon}, \epsilon > 0\} \subset \mathcal{S}^m$, and any $\delta > 0$,

$$
\lim_{\epsilon \to 0} \mathbb{P}\Big(\|X^{\epsilon, u_{\epsilon}} - \Gamma^{0}(u_{\epsilon})\|_{\infty} > \delta \Big) = 0.
$$

(LDP2) For any $m \in (0, \infty)$ and any family $\{u_n \in S^m, n \in \mathbb{N}\}\$ satisfying that u_n converges to some element u in S^m as $n\to\infty$, $\mathsf{\Gamma}^0(u_n)$ converges to $\mathsf{\Gamma}^0(u)$ in the space $C([0, T]; \mathbb{R}^d)$.

Introduction

${\sf LDP}$ on $(\,C^\alpha([0,\,T];\mathbb{R}^d),\|\cdot\|_{\alpha}) ;$

- 1 P. Baldi, G. Ben Arous, and G. Kerkyacharian, Large deviations and the Strassen theorem in Hölder norm. Stochastic Process. Appl. 42(1992), no.1, 171-180.
- 2 G. Ben Arous and M. Ledoux, Grandes déviations de Freidlin-Wentzell en norme Hölderienne. In Séminaire de Probabilités, XXVIII. Lecture Notes in Math., 1583(1994), 293-299. Springer, Berlin.
- 3 Y.-J. Hu, A large deviation principle for small perturbations of random evolution equations in Hölder norm. Stochastic Process. Appl. 68(1997), 83-99.
- 4 F. Gao, Large deviations for diffusion processes in Hölder norm. Adv. in Math. (China), 26(1997), no.2, 147-158.
- 5 G. Dos Reis, W. Salkeld, and J. Tugaut, Freidlin-Wentzell LDPs in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab., 29(2019), 1487-1540.

Idea of the existing results: Two steps to establish LDP on Hölder space:

- Step 1: prove LDPs on $C([0, T]; \mathbb{R}^d)$.
- Step 2: transfer LDP results from supremum norms to Hölder norms. To derive the following inequality: for each $R > 0$ and $\rho > 0$, there exists $\delta > 0$ and for $v > 0$ such that for $\epsilon \in (0, v)$,

$$
\mathbb{P}\left(\|X^{\epsilon}-Y^{\iota}\|_{\alpha} \geq \rho, \|\sqrt{\epsilon}W-\int_0^{\cdot} u(s) \mathrm{d}s\|_{\infty} \leq \delta\right) \lesssim \exp\left(-\frac{R}{\epsilon}\right).
$$

For any fixed $\tau > 0$, denote by $\mathscr{C} := \mathsf{C}([-\tau,0],\mathbb{R}^d)$ the space of all continuous \mathbb{R}^d- valued functions defined on $[-\tau,0].$ It is equipped with the uniform norm

$$
\|\xi\|_{\mathscr{C}} := \sup_{\theta \in [-\tau,0]} |\xi(\theta)|.
$$

For any fixed $\tau > 0$, denote by $\mathscr{C} := \mathsf{C}([-\tau,0],\mathbb{R}^d)$ the space of all continuous \mathbb{R}^d- valued functions defined on $[-\tau,0].$ It is equipped with the uniform norm

$$
\|\xi\|_{\mathscr{C}} := \sup_{\theta \in [-\tau,0]} |\xi(\theta)|.
$$

Let $\mathscr{P}^{\mathscr{C}}_2$ be the collection of all probability measures with finite second moments on $\mathscr C$. It is equipped with

$$
\mathbb{W}_2(\mu,\nu) := \inf_{\pi \in \Gamma(\mu,\nu)} \left(\int_{\mathscr{C} \times \mathscr{C}} \|\xi - \eta\|_{\mathscr{C}}^2 \pi(d\xi, d\eta) \right)^{\frac{1}{2}},
$$

where $\Gamma(\mu, \nu)$ denotes the set of all couplings for μ and ν .

For any fixed $\tau > 0$, denote by $\mathscr{C} := \mathsf{C}([-\tau,0],\mathbb{R}^d)$ the space of all continuous \mathbb{R}^d- valued functions defined on $[-\tau,0].$ It is equipped with the uniform norm

$$
\|\xi\|_{\mathscr{C}} := \sup_{\theta \in [-\tau,0]} |\xi(\theta)|.
$$

Let $\mathscr{P}^{\mathscr{C}}_2$ be the collection of all probability measures with finite second moments on $\mathscr C$. It is equipped with

$$
\mathbb{W}_{2}(\mu,\nu) := \inf_{\pi \in \Gamma(\mu,\nu)} \left(\int_{\mathscr{C} \times \mathscr{C}} ||\xi - \eta||_{\mathscr{C}}^2 \pi(\mathrm{d}\xi,\mathrm{d}\eta) \right)^{\frac{1}{2}},
$$

where $\Gamma(\mu, \nu)$ denotes the set of all couplings for μ and ν .

For $f \in C([-\tau, T], \mathbb{R}^d)$, the $\mathscr{C}\text{-}\mathsf{valued}$ function $\{f_t\}_{t \in [0, T]}$ defined by

 $f_t(\theta) = f(t + \theta), \theta \in [-\tau, 0]$

is called the segment (or window) process of $\{f(t)\}_{t\in[-\tau,\mathcal{T}]}$.

Path-distribution dependent SDEs:

Let $b:[0,+\infty)\times \mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}\to \mathbb{R}^d$ and $\sigma:[0,+\infty)\times \mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}\to \mathbb{R}^d\otimes \mathbb{R}^d$ be measurable functions.

Path-distribution dependent SDEs:

Let $b:[0,+\infty)\times \mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}\to \mathbb{R}^d$ and $\sigma:[0,+\infty)\times \mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}\to \mathbb{R}^d\otimes \mathbb{R}^d$ be measurable functions.

Consider the following path-distribution dependent SDEs:

 $dX(t) = b(t, X_t, \mathscr{L}_{X_t})dt + \sigma(t, X_t, \mathscr{L}_{X_t})dW(t), \quad X_0 = \xi,$ (2)

where ξ is an element of \mathscr{C} , X_t is the segment process and \mathscr{L}_{X_t} stands for the distribution of X_t .

O Consider

 $dX^{\epsilon}(t) = b(t, X^{\epsilon}_t, \mathscr{L}_{X^{\epsilon}_t})dt + \sqrt{\epsilon}\sigma(t, X^{\epsilon}_t, \mathscr{L}_{X^{\epsilon}_t})dW(t), \quad X_0 = \xi \in \mathscr{C}.$

Let $\{X^0(t)\}_{t\in[-\tau,\,T]}$ be the solution of

$$
dX^{0}(t)=b(t,X_{t}^{0},\delta_{X_{t}^{0}})dt, \quad X_{0}=\xi\in\mathscr{C}.
$$

Assumptions:

 $(H1)$ (Continuity) For each $t\geq 0,$ $b(t,\cdot,\cdot)$ is continuous on $\mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}$, and there exists $L > 0$ such that for $t \geq 0 \xi, \eta \in \mathscr{C}$, $\mu, \nu \in \mathscr{P}_2^{\mathscr{C}}$,

 $|b(t,\xi,\mu)-b(t,\eta,\nu)|^2+\|\sigma(t,\xi,\mu)-\sigma(t,\eta,\nu)\|^2\leq L\left(\|\xi-\eta\|_{\mathscr{C}}^2+\mathbb{W}_2^2(\mu,\nu)\right).$

Assumptions:

 $(H1)$ (Continuity) For each $t\geq 0,$ $b(t,\cdot,\cdot)$ is continuous on $\mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}$, and there exists $L > 0$ such that for $t \geq 0 \xi, \eta \in \mathscr{C}$, $\mu, \nu \in \mathscr{P}_2^{\mathscr{C}}$,

 $|b(t,\xi,\mu)-b(t,\eta,\nu)|^2+\|\sigma(t,\xi,\mu)-\sigma(t,\eta,\nu)\|^2\leq L\left(\|\xi-\eta\|_{\mathscr{C}}^2+\mathbb{W}_2^2(\mu,\nu)\right).$

(H2) (Growth) b is bounded on bounded sets in $[0,\infty)\times\mathscr{C}\times\mathscr{P}_2^{\mathscr{C}}$, and there exists $K > 0$ such that

 $||b(t, 0, \mu)||^2 + ||\sigma(t, 0, \mu)||^2 \leq K \left(1 + \mu(||\cdot||^2_{\mathscr{C}})\right), t \geq 0, \mu \in \mathscr{P}_2^{\mathscr{C}}.$

Assumptions:

 $(H1)$ (Continuity) For each $t\geq 0,$ $b(t,\cdot,\cdot)$ is continuous on $\mathscr{C}\times \mathscr{P}_2^{\mathscr{C}}$, and there exists $L > 0$ such that for $t \geq 0 \xi, \eta \in \mathscr{C}$, $\mu, \nu \in \mathscr{P}_2^{\mathscr{C}}$,

 $|b(t,\xi,\mu)-b(t,\eta,\nu)|^2+\|\sigma(t,\xi,\mu)-\sigma(t,\eta,\nu)\|^2\leq L\left(\|\xi-\eta\|_{\mathscr{C}}^2+\mathbb{W}_2^2(\mu,\nu)\right).$

(H2) (Growth) b is bounded on bounded sets in $[0,\infty)\times\mathscr{C}\times\mathscr{P}_2^{\mathscr{C}}$, and there exists $K > 0$ such that

 $||b(t, 0, \mu)||^2 + ||\sigma(t, 0, \mu)||^2 \leq K \left(1 + \mu(||\cdot||^2_{\mathscr{C}})\right), t \geq 0, \mu \in \mathscr{P}_2^{\mathscr{C}}.$

(H3) For any $t \in [0, T]$ and $\mu \in \mathscr{P}_2$, $b(t, \cdot, \mu) : \mathscr{C} \to \mathbb{R}^d$ is Frechet differentiable. There exists $L' > 0$ such that

 $||Db(t, x, \mu) - Db(t, x', \mu)||_{\mathscr{C}^*} \le L'||x - x'||_{\mathscr{C}}, \forall x, x' \in \mathscr{C}, t \in [0, T], \mu \in \mathscr{P}_2$ and $\int_0^T \|Db(t,X_t^0,\delta_{X_t^0})\|_{\mathscr{C}^*}\mathrm{d}t < \infty.$

Definition

A continuous adapted process $\{X_t\}$ on $\mathscr C$ is called a strong solution of [\(2\)](#page-29-0), if

$$
\int_0^t \mathbb{E} |b(s, X_s, \mathscr{L}_{X_s})| \mathrm{d} s + \int_0^t \mathbb{E} \| \sigma(s, X_s, \mathscr{L}_{X_s})\|^2 \mathrm{d} s < \infty, \ \ t \geq 0
$$

and $X(t) := X_t(0)$ satisfies

$$
X(t)=\xi(0)+\int_0^t b(s,X_s,\mathscr{L}_{X_s})\mathrm{d} s+\int_0^t \sigma(s,X_s,\mathscr{L}_{X_s})\mathrm{d} W_s, \quad t\geq 0.
$$

Definition

A continuous adapted process $\{X_t\}$ on $\mathscr C$ is called a strong solution of [\(2\)](#page-29-0), if

$$
\int_0^t\mathbb{E}|b(s,X_s,\mathscr{L}_{X_s})|{\rm d} s+\int_0^t\mathbb{E}\|\sigma(s,X_s,\mathscr{L}_{X_s})\|^2{\rm d} s<\infty,\ \ t\geq 0
$$

and $X(t) := X_t(0)$ satisfies

$$
X(t)=\xi(0)+\int_0^t b(s,X_s,\mathscr{L}_{X_s})\mathrm{d} s+\int_0^t \sigma(s,X_s,\mathscr{L}_{X_s})\mathrm{d} W_s, \quad t\geq 0.
$$

Existence and Uniqueness of the Solution: According to Theorem 3.1 in [1], under (H1) and (H2) there is a unique strong solution to [\(2\)](#page-29-0).

1. X. Huang, M. Röckner, F.-Y. Wang, Nonlinear Fokker-Planck equations for probability measures on path space and path-distribution dependent SDEs, Discrete Contin. Dyn. Syst., 39(2019), 3017-3035.

Y. Song (NJU) [LDP and MDP for DDSDEs](#page-0-0) 26 - 11 - 2022 21 / 28

For $u\in L^2([0,\,T],\mathbb{R}^d)$, let $\set{Y^u(t)}_{t\in [-\tau,\,T]}$ be the solution of

$$
\begin{cases}\n\frac{\mathrm{d}Y^{u}(t)}{\mathrm{d}t} = b(t, Y^{u}_{t}, \delta_{X^{0}_{t}}) + \sigma(t, Y^{u}_{t}, \delta_{X^{0}_{t}})u(t), \quad t \in (0, T], \\
Y^{u}_{0}(t) = \xi(t), \quad t \in [-\tau, 0].\n\end{cases}
$$
\n(3)

For $u\in L^2([0,\,T],\mathbb{R}^d)$, let $\set{Y^u(t)}_{t\in [-\tau,\,T]}$ be the solution of

$$
\begin{cases}\n\frac{\mathrm{d}Y^{u}(t)}{\mathrm{d}t} = b(t, Y^{u}_{t}, \delta_{X^{0}_{t}}) + \sigma(t, Y^{u}_{t}, \delta_{X^{0}_{t}})u(t), \quad t \in (0, T], \\
Y^{u}_{0}(t) = \xi(t), \quad t \in [-\tau, 0].\n\end{cases}
$$
\n(3)

Theorem 1[Gu, S. 2022]

Assume $\rm(H1)$ and $\rm(H2)$ hold. Then $\{X^{\epsilon}(\cdot)\}_{\epsilon>0}$ satisfies a LDP on $\mathcal{C}([-\tau, \tau]; \mathbb{R}^d)$ with the speed ϵ and the rate function I given by

$$
I(g) = \inf_{\{u \in L^2([0,T], \mathbb{R}^d): g = Y^u\}} \left\{ \frac{1}{2} \int_0^T |u(s)|^2 \mathrm{d} s \right\}, \quad g \in C([-\tau, T], \mathbb{R}^d).
$$

Let $a(\epsilon) > 0, \epsilon \in (0,1)$ satisfy

$$
a(\epsilon)\to+\infty,\ \ \frac{\epsilon}{a(\epsilon)^2}\to0,\ \ \epsilon\to0.
$$

Define

$$
M^{\epsilon}(t):=\frac{1}{a(\epsilon)}\left(X^{\epsilon}(t)-X^{0}(t)\right), \quad t\in[-\tau, T]
$$

and for $t \in [0, T]$

$$
M_t^{\epsilon}(r):=M^{\epsilon}(t+r), r\in [-\tau,0].
$$

For $u \in S$, let K^u be the solution of

 $\int dK^u(t) =_{\mathscr{C}^*} \langle Db(t, X_t^0, \delta_{X_t^0}), K_t^u \rangle_{\mathscr{C}} dt + \sigma(t, X_t^0, \delta_{X_t^0}) u(t) dt,$ $K_0^u(t) = 0, \quad t \in [-\tau, 0].$

For $u \in S$, let K^u be the solution of

 $\int dK^u(t) =_{\mathscr{C}^*} \langle Db(t, X_t^0, \delta_{X_t^0}), K_t^u \rangle_{\mathscr{C}} dt + \sigma(t, X_t^0, \delta_{X_t^0}) u(t) dt,$ $K_0^u(t) = 0, \quad t \in [-\tau, 0].$

Theorem 2[Gu, S. 2022]

Assume (H1), (H2) and (H3) hold. Then $\{M^{\epsilon}(\cdot), \epsilon > 0\}$ satisfies a LDP on $C([-\tau, T], \mathbb{R}^d)$ with speed $\epsilon/a(\epsilon)$ and the rate function I given by

$$
I(g) = \inf_{\{u \in L^2([0,T], \mathbb{R}^d): g = K^u\}} \left\{ \frac{1}{2} \int_0^T |u(s)|^2 \mathrm{d} s \right\}, \quad g \in C([-\tau, T], \mathbb{R}^d).
$$

(H4) σ is bounded and there exists $\beta \in (0,1]$ such that for each $y \in \mathscr{C}$ and $\mu \in \mathscr{P}^{\mathscr{C}}$, $b(\cdot, y, \mu)$ and $\sigma(\cdot, y, \mu)$ are β -Hölder continuous.

(H4) σ is bounded and there exists $\beta \in (0,1]$ such that for each $y \in \mathscr{C}$ and $\mu \in \mathscr{P}^{\mathscr{C}}$, $b(\cdot, y, \mu)$ and $\sigma(\cdot, y, \mu)$ are β -Hölder continuous.

For a Borel set A of Hölder space $C^{\alpha}([-\tau,1]; \mathbb{R}^{d}),$ denote

$$
I(A) := \inf \left\{ \frac{1}{2} \int_0^1 |u(s)|^2 \mathrm{d} s : Y^u \in A \right\}.
$$

Theorem 3[S. 2022]

Assume (H1), (H2) and (H4) hold. Let $\alpha\in(0,\frac{1}{2})$ and $\xi\in C^{\alpha}([-\tau,0];\mathbb{R}^{d}).$ Then for each Borel set A of $C^{\alpha}([-\tau,1]; \mathbb{R}^d)$,

 $- I(\mathring{A}) \leq \liminf_{\epsilon \to 0} \epsilon \log \mathbb{P}(X^{\epsilon} \in A) \leq \limsup_{\epsilon \to 0} \epsilon \log \mathbb{P}(X^{\epsilon} \in A) \leq - I(\overline{A}),$

where $\rm \AA$ and $\overline{\rm A}$ are the interior and closure of $\rm A$ in $\rm C^{\alpha}([-\tau,1];\mathbb{R}^{d}).$

Proposition 4

Under the conditions of Theorem 3, for each $R > 0$ and $\rho > 0$, there exists $\delta > 0$ and for $v > 0$ such that for $\epsilon \in (0, v)$,

$$
\mathbb{P}\left(\|X^{\epsilon}-Y^u\|_{\alpha}\geq\rho,\|\sqrt{\epsilon}W-\int_0^{\cdot}u(s)\mathrm{d}s\|_{\infty}\leq\delta\right)\lesssim\exp\left(-\frac{R}{\epsilon}\right).
$$

Let *n* be an integer and $\{\bar{W}(t)\}_{t\in[0,1]}$ be a *n*-dimensional Brownian motion.

Lemma[G. Ben Arous, M. Ledoux 1994]

For $\alpha \in (0, \frac{1}{2})$, there exists a constant $C > 0$ independent of n such that for $u, v > 0$,

$$
\mathbb{P}\left(\|\bar{W}\|_{\alpha} \geq u, \|\bar{W}\|_{\infty} \leq v\right) \leq C \max\left\{1, \left(\frac{u}{v}\right)^{\frac{1}{\alpha}}\right\} \exp\Big\{-\frac{1}{C} \frac{u^{\frac{1}{\alpha}}}{v^{\frac{1}{\alpha}-2}}\Big\}.
$$

Let *n* be an integer and ${\bar{W}(t)}_{t\in[0,1]}$ be a *n*-dimensional Brownian motion.

Lemma[G. Ben Arous, M. Ledoux 1994]

For $\alpha \in (0, \frac{1}{2})$, there exists a constant $C > 0$ independent of n such that for $u, v > 0$,

$$
\mathbb{P}\left(\|\bar{W}\|_{\alpha} \geq u, \|\bar{W}\|_{\infty} \leq v\right) \leq C \max\left\{1, \left(\frac{u}{v}\right)^{\frac{1}{\alpha}}\right\} \exp\Big\{-\frac{1}{C} \frac{u^{\frac{1}{\alpha}}}{v^{\frac{1}{\alpha}-2}}\Big\}.
$$

Lemma[G. Ben Arous, M. Ledoux 1994]

For $\alpha\in(0,\frac{1}{2}),$ there is a constant $C'>0$ such that for $u>0$ and $K\in C([0,1])$ with $\|K\|_{\infty} \leq 1$,

$$
\mathbb{P}\left(\|\int_0^{\cdot}K(s)\mathrm{d} W(s)\|_{\alpha}\geq u, \|K\|_{\infty}\leq 1\right)\leq C'\exp\big\{-\frac{u^2}{C'}\}.
$$

Thanks for Your Attention.